
AddressSanitizer
for Windows

Timur Iskhodzhanov
Google

AddressSanitizer (a.k.a. ASan)
● High performance

○ Uses compile-time instrumentation
○ Lightweight algorithm
○ Multi-threaded

● Focuses on severe bugs
○ buffer overflows
○ uses of freed / unavailable memory
○ and more

● Supports Linux, Mac OS; more in development

ASan overview follows
A more complete version:
Konstantin Serebryany, Derek Bruening,
Alexander Potapenko, Dmitry Vyukov,
AddressSanitizer: a fast address sanity checker,
Proceedings of the 2012 USENIX conference on Annual
Technical Conference, 2012

ASan code instrumentation
Original code:

*addr = 42;

Instrumented pseudocode:
if (!is_ok_to_use(addr))
 print_report_and_crash();
// memory is ok to use:
*addr = 42;

ASan shadow memory
A state of every aligned 8 bytes of memory is stored in a
single shadow byte

Simple shadow address calculation
 shadow_addr = addr / 8 + offset

Allows very simple instrumentation,
performed at LLVM IR level

ASan shadow memory

● Easy to allocate memory
for the shadow

● Fixed address range

● Have to do it early

Memory: 0x7fffffff

 0x40000000

Shadow: 0x2fffffff
 0x20000000

Memory: 0x1fffffff

 0x00000000

Function interception

Have to intercept some functions:
● malloc, free, etc. – to track memory

● strlen, memcpy, etc. – to detect more errors

● pthread_create, etc. – to understand the app

Error reporting

● Grab the current stack trace

● Pinpoint the (mis)accessed memory allocation

● Get extra info from allocation metadata

● Print out everything

● Terminate the process

ASan for Windows – overview

● Goal: find nasty Chromium bugs on Windows

● Started in 2012 after ASan success on Linux

● “Beta” experience available mid-2014

Progress overview
● Instrumentation – no changes needed, thanks IR!

● Significant changes to the ASan run-time library (RTL)

● Massive effort on Clang C++ ABI support

● clang-cl bonus: can mix MSVC & Clang .obj files,
supports automatic fallback
(e.g. code with exceptions)

C run-time support
● Multiple C run-time (CRT) implementations:

○ /MT (static linkage)
○ /MTd (static linkage, debug)
○ /MD (DLL linkage)
○ /MDd (DLL linkage, debug)

● Each CRT requires different handling
● Currently supported: /MT, /MD
● Each DLL might have its own copy of /MT CRT,

i.e. malloc, heap, CRT global state etc.

/MT CRT support
EXE
● Just define malloc, etc. to intercept them

● dllimport’ed functions like CreateThread
need to be hot-patched at start-up

● Init ASan RTL as part of the first calloc
early in CRT init

DLL
● Redirect calls to intercepted functions from DLL

to the interceptor implementations in the EXE

/MD CRT support

● Also need to hot-patch MSVCR*.dll early

● RTL is a DLL without dependencies to CRT,
gets initialized earlier

Report symbolization and debug info
ASan requires line tables to be useful.

Added COFF line table debug info support to LLVM
● Almost-free bonus: can step line by line in debuggers

(VS, windbg)
● Can’t look up variable values though

Deployment

● Can build and run Chromium

● Deployed to ClusterFuzz,
found 50+ security bugs in 3 months

● We’re working with Mozilla Firefox and
other OSS developers

Please try AddressSanitizer on your Windows app

p.s. tests and patches are welcome
Timur Iskhodzhanov

timurrrr@google.com

Thanks for listening!

